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SUMMARY

The synaptic serine protease neurotrypsin is essen-
tial for cognitive function, as its deficiency in humans
results in severe mental retardation. Recently, we
demonstrated the activity-dependent release of neu-
rotrypsin from presynaptic terminals and proteolyti-
cal cleavage of agrin at the synapse. Here we show
that the activity-dependent formation of dendritic
filopodia is abolished in hippocampal neurons from
neurotrypsin-deficient mice. Administration of the
neurotrypsin-dependent 22 kDa fragment of agrin
rescues the filopodial response. Detailed analyses
indicated that presynaptic action potential firing is
necessary for the release of neurotrypsin, whereas
postsynaptic NMDA receptor activation is necessary
for the neurotrypsin-dependent cleavage of agrin.
This contingency characterizes the neurotrypsin-
agrin system as a coincidence detector of pre- and
postsynaptic activation. As the resulting dendritic
filopodia are thought to represent precursors of
synapses, the neurotrypsin-dependent cleavage of
agrin at the synapse may be instrumental for a Heb-
bian organization and remodeling of synaptic circuits
in the CNS.

INTRODUCTION

Synaptic plasticity is a fundamental phenomenon contributing to

cognitive functions, such as learning and memory. The molec-

ular and cellular mechanisms underlying activity-dependent

synaptic plasticity induce structural and functional changes in

preexisting synapses and generate new synapses (Malenka
and Nicoll, 1999; Toni et al., 1999; Nikonenko et al., 2002; Ste-

panyants et al., 2002; Chklovskii et al., 2004). The serine

protease neurotrypsin is crucial for cognitive brain function, as

a 4-base-pair deletion in the coding region, which generates

a truncated protein lacking the protease domain, causes severe

mental retardation in humans (Molinari et al., 2002). In the adult

central nervous system (CNS), neurotrypsin mRNA is promi-

nently expressed in neurons of the cerebral cortex, the hippo-

campus, and the lateral amygdala and in motor neurons of the

brain stem and the spinal cord (Gschwend et al., 1997; Wolfer

et al., 2001). Neurotrypsin protein was localized by immunoelec-

tron microscopy to presynaptic boutons (Molinari et al., 2002;

Stephan et al., 2008). Live-imaging studies with cultured hippo-

campal neurons indicated that a major fraction of synaptic neu-

rotrypsin is contained in internal stores and that both recruitment

to synapses and exocytosis are regulated by neuronal activity

(Frischknecht et al., 2008). These studies further revealed that

externalized neurotrypsin-pHluorin remains visible at the

synapse for minutes before it disappears due to diffusion, degra-

dation, or re-endocytosis.

At present, the only known proteolytic substrate of neurotryp-

sin is the proteoglycan agrin (Reif et al., 2007). Neurotrypsin

cleaves agrin at two homologous, highly conserved sites, result-

ing in a 90 kDa fragment (agrin-90) confined by the two cleavage

sites and a 22 kDa fragment (agrin-22) consisting of the

C-terminal laminin G domain. Agrin is widely expressed in the

CNS and it is abundant at and in the vicinity of synapses (Koulen

et al., 1999; Ksiazek et al., 2007). Subcellular fractionation and

isolation of synaptosomes revealed that neurotrypsin-depen-

dent agrin cleavage is concentrated at synapses (Stephan

et al., 2008).

Here, we identify activity-dependent presynaptic exocytosis

of neurotrypsin and the resulting proteolytic cleavage of agrin

at CNS synapses as a mechanism promoting the activity-depen-

dent formation of dendritic filopodia. Furthermore, we found that
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Figure 1. Exocytosis of Neurotrypsin Is

a Transient Response to Presynaptic Acti-

vation

Neurotrypsin-pHluorin was expressed in neurons

of transgenic mice under the Thy1 promoter. Its

subcellular localization was monitored in slices of

the deep layers of the entorhinal cortex of 4- to

6-week-old mice based on the pH-dependent

fluorescence of pHluorin.

(A–C) Neurotrypsin-pHluorin signals in the deep

layers (III–VI) of the entorhinal cortex colocalized

with the synaptic marker synapsin I. Note that all

large neurotrypsin-pHluorin puncta (arrows in A)

are colocalized with a prominent synapsin I signal

(B and C). Bar, 10 mm.

(D and E) The numbers of large neurotrypsin-

pHluorin puncta with an area between 0.8 and

3 mm2 were counted in visual fields of 0.08 mm2

after NH4Cl treatment and various chemical stim-

ulations of synaptic activity, such as KCl for

10 min (KCl-L) or 40 s (KCl-S) or tetraethylammo-

nium chloride (TEA), bicuculline (BCC), and gluta-

mate (Glu). Tetrodotoxin (1 mM) was used to block

action potentials.

(F) Pharmacological characterization of synaptic

exocytosis of neurotrypsin. Presynaptic Ca2+

channels were blocked with u-agatoxin IVA

(ATX) and u-conotoxin GVIA (CTX). AMPA and

NMDA receptors were blocked with CNQX and

MK-801, respectively.

(G) Time course of neurotrypsin-pHluorin exocy-

tosis. Stimulation periods are shown by black

bars. Error bars indicate SEM; *p < 0.05; **p <

0.01; ***p < 0.001, ANOVA with Tukey’s post hoc

test (n = 4–16).
presynaptic exocytosis of neurotrypsin depended on action

potentials and P/Q/N-type calcium channels, while neurotryp-

sin-dependent cleavage of agrin required the additional activa-

tion of the postsynaptic cell. Therefore, neurotrypsin-dependent

cleavage of agrin could represent a molecular coincidence

detector for concomitant pre- and postsynaptic activation.

Because dendritic filopodia have been proposed as crucial

precursors of new CNS synapses (Jontes and Smith, 2000;

Yuste and Bonhoeffer, 2004), our results suggest a role for the

neurotrypsin-agrin system in the activity-controlled regulation

of synaptogenesis and circuit reorganization in the CNS.

RESULTS

Synaptic Exocytosis of Neurotrypsin-pHluorin Requires
Presynaptic but Not Postsynaptic Activation
To monitor exocytosis from synaptic intracellular stores in CNS

slices, we generated transgenic mice expressing a neurotryp-

sin-pHluorin fusion protein in neurons (Figure S1 available

online). pHluorin is a pH-sensitive variant of green fluorescent

protein (GFP) (Miesenböck et al., 1998), with strong fluorescence

at neutral pH but very low fluorescence in an acidic environment,

such as the lumen of secretory vesicles (pH 5–6). Therefore,
1162 Cell 136, 1161–1171, March 20, 2009 ª2009 Elsevier Inc.
fusion with pHluorin generates a means to monitor exocytosis

of a protein from acidic secretory vesicles.

For the histological validation of correct synaptic sorting of

neurotrypsin-pHluorin, we investigated the pathway from subic-

ulum-CA1 neurons to the deep layers (III–VI) of the entorhinal

cortex in 400 mm-thick acute slices taken from 4- to 6-week-

old neurotrypsin-pHluorin expressing transgenic mice under

permeabilizing conditions (Figures 1A–1C). We found that all

prominent neurotrypsin-pHluorin puncta larger than 0.8 mm2

(arrows in Figure 1A) colocalized with a prominent synapsin

I-immunopositive punctum, indicating their synaptic localization

(Figures 1B and 1C). In contrast, the vast majority of small neuro-

trypsin-pHluorin puncta were not colocalized with the synaptic

marker and were therefore extrasynaptic. This observation is

consistent with our live-imaging studies of dissociated hippo-

campal cultures, where we found that the fluorescence intensity

was on average 3–5 times higher for synaptic neurotrypsin-

pHluorin than for extrasynaptic transport packages (Frisch-

knecht et al., 2008). Therefore, we defined fluorescent puncta

as large or synaptic, if their area was between 0.8 and 3 mm2.

Smaller puncta were qualified as extrasynaptic.

We found relatively few extracellular neurotrypsin-pHluorin

puncta in tissue slices kept at neutral pH in artificial cerebro-

spinal fluid (Figures 1D and S3A). To visualize the intracellular



pools of neurotrypsin, we substituted 50 mM NaCl of the ACSF

with ammonium chloride to neutralize the lumen of naturally

acidic secretory vesicles (Miesenböck et al., 1998). Vesicle

neutralization increased the number of large (synaptic)

neurotrypsin-pHluorin puncta almost 4-fold (Figures 1D and

S3B). This indicated that most synaptic neurotrypsin was intra-

cellular and remained undetected at neutral pH and that approx-

imately 75% of the neurotrypsin-pHluorin-containing synapses

exhibited no or very little neurotrypsin on their extracellular sides.

Cell depolarization with high extracellular potassium (Figures

1D, S3D, and S3E) or blockade of K+-channels with tetraethy-

lammonium chloride (TEA; Figures 1D and S3F) increased the

number of large extracellular fluorescent puncta more than

2-fold. The same results were found for a second neurotrypsin-

pHluorin-expressing line (Figure S4). The number of extracellular

neurotrypsin-pHluorin puncta was also increased by other

chemical enhancers of network activity, such as glutamate and

the GABAA receptor blocker bicuculline (Figure 1E). The effect

of glutamate was prevented by tetrodotoxin, a blocker of

voltage-dependent sodium channels, indicating an essential

role of action potentials.

We pharmacologically characterized the mechanism of secre-

tion using several ion channel inhibitors (Figure 1F). The

K+-induced increase in the number of large pHluorin puncta was

completely abolished by u-agatoxin (ATX) and u-conotoxin

(CTX), which block P/Q- and N-type calcium channels, respec-

tively. Activation of AMPA and NMDA-type glutamate receptors

(NMDA-R) was not necessary for neurotrypsin exocytosis, as the

combination of CNQX and MK-801 had no effect. Together, these

results indicated that synapticexocytosisof neurotrypsin-pHluorin

required action potentials and presynaptic activation but did not

depend on activation of postsynaptic glutamate receptors.

The time course of the activity-dependent synaptic external-

ization of neurotrypsin-pHluorin is shown in Figure 1G. The

number of pHluorin puncta increased significantly 2 min after

addition of K+ or TEA. At its peak after 5–10 min, the number of

pHluorin puncta was about three times higher than before stim-

ulation. After the end of the stimulation period, the number of

puncta gradually decreased. A significant increase of pHluorin

puncta was also elicited by a short (40 s) stimulation with

50 mM KCl. These results characterized extracellular neurotryp-

sin as a transient response to presynaptic activation.

Activity-Induced Synaptic Exocytosis of Neurotrypsin
Results in Proteolytic Cleavage of Agrin
To assess neurotrypsin-dependent cleavage of agrin after

synaptic exocytosis of neurotrypsin, we used whole hippocampi

from P10 mice for two reasons: first, expression levels of both

neurotrypsin and agrin are highest during the first two postnatal

weeks (Reif et al., 2007; Stephan et al., 2008) and, second, tissue

at this age can be maintained in ACSF for several hours (Khalilov

et al., 1997; Li et al., 2001). We used agrin-90 to monitor neuro-

trypsin activity because its presence indicated cleavage at both

neurotrypsin-dependent sites (Figure 2A). Agrin-90 was readily

detectable after incubation in ACSF for 10 min without stimula-

tion (Figure 2B). It was completely absent in neurotrypsin-defi-

cient mice. Thus, cleavage of agrin in vivo strictly depended on

neurotrypsin.
A 10 min exposure of whole hippocampi to the potassium

channel blocker 4-aminopyridine (4-AP) resulted in a significant

increase of agrin-90 (Figure 2B), indicating that neurotrypsin-

dependent cleavage of agrin was upregulated by increased

neuronal activity. Absence of agrin-90 in neurotrypsin-deficient

mice after 4-AP stimulation indicated that neurotrypsin was the

only protease cleaving agrin in an activity-dependent manner.

The time course of the stimulation-induced increase of agrin-

90 was studied for KCl, 4-AP, and TEA. As shown in Figures 2C

and 2D, all three K+-based stimulations resulted in a transient

increase of agrin-90. The response patterns were similar, with

an �40% increase peaking at the end of the 10 min stimulation

period. After stimulation the intensity of agrin-90 gradually

decreased and reached pre-stimulation levels after �30 min.

Under control conditions without stimulation (Figure 2D), levels

of agrin-90 gradually decreased during the first 20 min and then

remained constant for the following 20 min. These results indicate

a close correlation between activity-dependent synaptic exocy-

tosis of neurotrypsin and cleavage of agrin. Further tests showed

that the TEA-induced increase of agrin-90 was abolished by the

combination of u-agatoxin and u-conotoxin (Figures 2E and

2F). Therefore, as with the stimulation-induced exocytosis of

neurotrypsin, the stimulation-induced increase of agrin-90

required the activation of presynaptic P/Q- and N-type Ca2+

channels. Together, these results indicate that presynaptic

exocytosis of neurotrypsin is necessary for agrin cleavage.

Cleavage of Agrin by Externalized Neurotrypsin
Requires Postsynaptic Activation
TEA evokes global bursting and produces long-term potentiation

(LTP) of synaptic transmission with properties similar to tetanus-

induced LTP (Huang and Malenka, 1993; Hanse and Gustafsson,

1994; Huber et al., 1995), indicating the concomitant activation of

the pre- and the postsynaptic neuron by TEA because this is

a prerequisite for the induction of LTP (Malenka and Nicoll,

1999). We thus tested for a postsynaptic component in TEA-

induced neurotrypsin-dependent agrin cleavage. We found that

the TEA-induced increase of agrin cleavage was prevented by

the AMPA and NMDA-R inhibitors CNQX and MK-801 (Figures

3A and 3B). In addition, a significant decrease of agrin cleavage

was also found with nifedipine, a selective inhibitor of L-type

voltage-dependent Ca2+ channels (VDCC). Therefore, TEA-

inducedneurotrypsin-dependentagrincleavageexhibitedapost-

synaptic contribution from both NMDA-Rs and L-type VDCCs, as

previously reported for the TEA-induced LTP (Huang and Mal-

enka, 1993; Hanse and Gustafsson, 1994; Huber et al., 1995).

We further confirmed this postsynaptic component with another

chemical LTP protocol, using the combination of picrotoxin, for-

skolin, and rolipram at high extracellular Ca2+ and no Mg2+

(PFR).PFRstimulation induces LTP in thehippocampalCA1 region

inanNMDA-R-dependentmannerby enhancing neuronalnetwork

activity via reduction of GABAergic inhibition in combination with

enhancing cAMP-mediated intracellular signaling (Otmakhov

et al., 2004; Kopec et al., 2006). We found that the PFR-induced

increase of agrin cleavage was prevented by the AMPA and

NMDA-receptor inhibitors CNQX and MK-801 (Figures 3C and

3D). Only a small, but insignificant reduction of PFR-induced agrin

cleavage was found with nifedipine, a blocker of L-type VDCCS
Cell 136, 1161–1171, March 20, 2009 ª2009 Elsevier Inc. 1163



(Figures 3C and 3D), which is in line with the reported NMDA-R

dependence of PFR-induced LTP (Otmakhov et al., 2004).

Together, these results indicate that neurotrypsin-dependent

agrin cleavage requires activation of presynaptic P/Q- and

N-type calcium channels that are essential for presynaptic

exocytosis of neurotrypsin. However, in contrast to neurotrypsin

exocytosis from presynaptic boutons, neurotrypsin-dependent

agrin cleavage also requires the activation of the postsynaptic

neuron, with the indispensable activation of NMDA-Rs. These

results indicate that neurotrypsin is externalized in an inactive

form and that NMDA-R-driven activity of the postsynaptic cell

is required for its activation. The dependence of neurotrypsin-

dependent agrin cleavage on postsynaptic activation was also

found with hippocampal slices from juvenile (4- to 6-week-old)

mice (Figures S5 and S6). Therefore, the dependence of neuro-

trypsin activation on postsynaptic mechanisms was found to

be an age-independent process.

LTP Is Intact, but LTP-Associated Formation of Dendritic
Filopodia Is Abolished in Neurotrypsin-Deficient Mice
Activation of NMDA-Rs and postsynaptic Ca2+ influx are essen-

tial for LTP induction (Malenka and Nicoll, 1999). Therefore, the

Figure 2. Neuronal Activity Enhances Agrin Cleavage by Neurotrypsin

Neurotrypsin-dependent cleavage of agrin was studied on western blots of whole hippocampi from P10 mice after stimulation of neural activity by different proto-

cols.

(A) Schematic representation of agrin and its neurotrypsin-dependent cleavage sites (arrows a and b). Cleavage of agrin at both sites generates a 22 kDa

C-terminal fragment (agrin-22) and a middle 90 kDa fragment (agrin-90). Partial cleavage at the a site only generates a 110 kDa C-terminal fragment (agrin-

110). Abbreviations: NtA, N-terminal agrin domain; TM, transmembrane segment; FS, follistatin-like domain; LE, laminin EGF-like domain; S/T, serine/threo-

nine-rich region; SEA, sperm protein, enterokinase, and agrin domain; EG, epidermal growth factor domain; LG, laminin globular domain; y and z, mRNA splicing

sites.

(B) Western blots for agrin from nonstimulated (NS) and 4-aminopyridine-stimulated (4AP) hippocampi from wild-type and neurotrypsin-deficient mice using anti-

agrin antibody R132. Due to differential glycanation, full-length agrin appears as a smear in the range of 200 to 600 kDa (arrow). Agrin-90 is indicated by the arrow-

head. b-actin loading controls are shown below.

(C) Western blots of agrin in KCl, 4AP, TEA-stimulated, and nonstimulated hippocampi from P10 mice at various time points after onset of stimulation. Arrowheads

indicate agrin-90. b-actin loading controls are shown below.

(D) Quantification of agrin-90 levels of (C). Levels of agrin-90 were normalized to b-actin. The average level before stimulation (0 min) was set to 1. The stimulation

period is indicated by a black bar. Error bars indicate SEM; *p < 0.05; **p < 0.01 versus nonstimulated controls by ANOVA with Tukey’s post hoc test (n = 3–8).

(E and F) Neurotrypsin-dependent agrin cleavage requires activation of presynaptic Ca2+ channels. TEA was used to stimulate neurotrypsin-dependent agrin

cleavage and the response to blockade of presynaptic P/Q- and N-type Ca2+ channels was studied by western blotting of agrin-90 (E). No Stim: control hippo-

campi without stimulation. Presynaptic P/Q- and N-type Ca2+ channels were blocked with u-agatoxin IVA (ATX) and u-conotoxin GVIA (CTX), respectively. (F)

Quantification of agrin-90 levels in (E). Relative levels of agrin-90 were normalized to b-actin. The average level found without stimulation was set to 1. Error bars

indicate SEM; *p < 0.05; **p < 0.01, ANOVA with Tukey’s post hoc test (n = 4–9).
1164 Cell 136, 1161–1171, March 20, 2009 ª2009 Elsevier Inc.



Figure 3. Neurotrypsin-Dependent Agrin Cleavage Requires Post-

synaptic Activation

The chemical LTP inducers TEA and PFR were used to stimulate neurotrypsin-

dependent agrin cleavage in whole hippocampi from P10 mice and the

response to blockade of postsynaptic channels was studied by western blot-

ting of agrin-90.

(A and B) Stimulation with TEA. (A) Representative western blot for agrin-90.

The b-actin loading control is shown below. No Stim: wild-type hippocampi

without stimulation. AMPA and NMDA receptors were blocked with CNQX

and MK-801, respectively. L-type VDCCs were blocked with nifedipine

(Nife). (B) Quantification of agrin-90 levels under the conditions specified in

(A). Levels of agrin-90 were normalized to b-actin. The average level found
recognition of neurotrypsin activation as an NMDA-R-dependent

process prompted the question of whether neurotrypsin plays

a role in LTP expression. To test this possibility, we compared

LTP in acute hippocampal slices from 4- to 6-week-old wild-

type and neurotrypsin-deficient mice (Figures 4A and 4B). LTP

was evoked in the CA1 region with four 1 s trains of 100 Hz stimuli.

Significant LTP was observed in slices from both wild-type litter-

mates and neurotrypsin-deficient mice (150.5% ± 8.8%, n = 10, p

< 0.001 and 169.1% ± 38%, n = 7, p = 0.05, respectively). There

was no difference in the extent of LTP between wild-type and

neurotrypsin-deficient mice (p = 0.66) (Figure 4B), indicating

that neurotrypsin was not essential for LTP expression.

Among the LTP-associated cellular phenomena, the formation

of dendritic filopodia is particularly intriguing because filopodia

have been characterized as early forms of spines and, thus,

precursors of synapses (Ziv and Smith, 1996; Engert and Bon-

hoeffer, 1999; Maletic-Savatic et al., 1999; Knott et al., 2006;

Toni et al., 2007). Therefore, we studied whether agrin cleavage

is involved in activity-dependent generation of filopodia in the

mature hippocampus. To visualize dendritic filopodia in hippo-

campal slices, we used the transgenic mouse line L15 expressing

membrane-targeted GFP (mGFP) in sparse neurons (De Paola

et al., 2003). Filopodia were counted in reconstructed three-

dimensional images of secondary apical dendrites by inspection

over a length of 30–40 mm (Figures 4C–4E). Dendritic filopodia

(arrows in Figure 4E) were identified according to the following

morphological criteria: (1) a protrusion with a length of at least

twice the average length of the spines on the same dendrite, (2)

a ratio of head to neck diameter smaller than 1.2:1, and (3) a ratio

of length toneck diameter larger than 3:1 (Grutzendler et al., 2002).

First, we investigated the effect of chemical LTP on filopodia

number, again using TEA- or PFR-induced global bursting as

a means to mimic tetanus-induced LTP. Our electrophysiological

recordings after TEA and PFR stimulation confirmed that both

protocols induce robust LTP and corroborated our results

obtained with electrical LTP induction that LTP was intact in slices

from neurotrypsin-deficient mice (Figure S7). In addition, tests

with propidium iodide indicated that neither TEA nor PFR stimu-

lation induced significant apoptosis in hippocampal slices

(Figure S8). Quantification of filopodia in nonstimulated control

samples indicated that the average number of filopodia was

0.114–0.118/mm (Figures 4F and 4H). Following TEA or PFR stim-

ulation, filopodial density was significantly increased to 0.156 or

0.152/mm, respectively (p < 0.001 versus No Stim by ANOVA

with Tukey’s post hoc test). Administration of the glutamate

receptor blockers CNQX or MK-801, or nifedipine, abolished

the filopodial response to TEA (Figure 4F). The dependence of

the filopodial response on both NMDA-Rs and L-type VDCCs is

consistent with previous studies indicating that TEA-induced

LTP consists of two mechanistically distinct forms of LTP, one

depending on NMDA-Rs and the other on L-type VDCCs (Huang

without stimulation was set to 1. Error bars indicate SEM; **p < 0.01; ***p <

0.001, ANOVA with Tukey’s post hoc test (n = 13–14).

(C and D) Stimulation with PFR. (C) Representative western blot for agrin-90

with b-actin loading control below. Ntd: neurotrypsin-deficient hippocampi.

(D) Quantification of agrin-90 levels under the conditions specified in (C).

**p < 0.01; ***p < 0.001 by ANOVA with Tukey’s post hoc test (n = 10–12).
Cell 136, 1161–1171, March 20, 2009 ª2009 Elsevier Inc. 1165



and Malenka, 1993; Hanse and Gustafsson, 1994; Huber et al.,

1995). The blockade by MK-801 and nifedipine indicates that

the LTP-associated filopodial response to TEA exhibits the

same inhibitor profile as TEA-induced LTP and TEA-induced neu-

rotrypsin-dependent agrin cleavage. Likewise, the filopodial

response to PFR stimulation was also blocked by the glutamate

receptor blockers CNQX and MK-801, but no significant inhibi-

tion was found after blockade of L-type VDCCs with nifedipine

Figure 4. LTP Is Intact, but LTP-Associated

Formation of Filopodia Is Abolished in Neu-

rotrypsin-Deficient Mice

LTP and LTP-associated promotion of dendritic

filopodia were assessed in hippocampal slices of

4- to 6-week-old neurotrypsin-deficient mice.

(A and B) LTP was studied by stimulation of the

Schaffer collaterals and electrophysiological

recordings of Schaffer collateral-CA1 synaptic

responses (A). Test stimuli were delivered at 30 s

intervals and LTP was induced by delivering four

1 s 100 Hz trains at 30 s intervals. (B) Comparison

of long-term potentiation (LTP) in the hippocampal

CA1 area of neurotrypsin-deficient (white squares)

and wild-type (black squares) mice. Data are

shown as mean ± SEM. The results indicate that

neurotrypsin-deficient mice have normal LTP.

(C–I) Analysis of filopodia on dendrites of CA1

pyramidal neurons in wild-type and neurotrypsin-

deficient mice expressing membrane-targeted

GFP in sparse neurons. (C) Representative image

of a GFP-expressing CA1 pyramidal neuron in

a hippocampal slice. (D) Higher magnification of

the secondary apical dendrite indicated by the

arrow in (C). (E) Reconstructed 3D image of the

secondary apical dendrite boxed in (D). Arrows

show filopodia identified according to the criteria

of Grutzendler et al. (2002). Bars: 50 mm in (C);

20 mm in (D); 10 mm in (E). (F–I) Filopodia numbers

on secondary apical dendrites of hippocampal

CA1 pyramidal neurons (For representative

images see Figure S9). (F) Number of filopodia

per 1 mm of dendrite after TEA stimulation and

effect of AMPA and NMDA receptor blockade by

CNQX and MK-801, respectively, and blockade

of L-type Ca2+ channels by nifedipine (Nife) in

L15 mice (wild-type for neurotrypsin). (G) Compar-

ison of filopodia formation after TEA stimulation in

wild-type and neurotrypsin-deficient mice. (H)

Filopodia numbers after PFR and effect of

CNQX, MK-801, and nifedipine. (I) Comparison

of filopodia formation after PFR stimulation in

wild-type and neurotrypsin-deficient mice. Error

bars indicate SEM; ***p < 0.001, ANOVA with

Tukey’s post hoc test. wt.: neurotrypsin wild-

type littermate control. ntd: neurotrypsin-deficient

mice.

(Figure 4H). Again, this is consistent with

the inhibitor profile of PFR-induced chem-

ical LTP (Otmakhov et al., 2004).

To examine the role of neurotrypsin in

LTP-induced generation of filopodia

(Figures 4G and 4I), we crossed neuro-

trypsin-deficient with transgenic L15 mice expressing mGFP in

sparse neurons. The number of filopodia along secondary apical

dendrites of CA1 pyramidal neurons was counted in mGFP-posi-

tive, neurotrypsin-deficient mice and in littermate (neurotrypsin-

wild-type) controls. CA1 neurons of wild-type mice had 0.107–

0.120 filopodia per mm (Figures 4G and 4I). Filopodia number

was significantly increased by both TEA and PFR stimulation,

reaching 0.172/mm and 0.166/mm, respectively (Figures 4G and
1166 Cell 136, 1161–1171, March 20, 2009 ª2009 Elsevier Inc.



4I). In contrast, neither TEA nor PFR stimulation induced a signif-

icant increase in filopodial density (0.117/mm and 0.119/mm,

respectively) in hippocampal slices of neurotrypsin-deficient

mice (Figures 4G and 4I). Together, these results indicate that

neurotrypsin is not required for induction and expression of

LTP but rather for the LTP-associated generation of filopodia.

The C-Terminal Fragment of Agrin Restores
the LTP-Induced Increase of Filopodia
in Neurotrypsin-Deficient Mice
Because agrin is the only proteolytic target of neurotrypsin and

because LTP-dependent induction of dendritic filopodia was

abolished in neurotrypsin-deficient mice, we wondered whether

the released agrin fragments (agrin-22, agrin-90, and agrin-110;

Figure 5. Isolated Agrin-22 Promotes the Formation of

Dendritic Filopodia

The fragments of agrin generated by neurotrypsin-dependent

cleavage were tested for their filopodia-promoting activity on

secondary apical dendrites of CA1 pyramidal neurons in

hippocampal slices from 4- to 6-week-old mice.

(A–E) Densities of filopodia on dendrites in neurotrypsin-defi-

cient hippocampi with or without agrin-22. (A–D) Representa-

tive images of dendrites of CA1 pyramidal neurons of neuro-

trypsin-deficient mice with or without agrin-22. Arrows

indicate filopodia. (E) Number of filopodia per 1 mm of dendrite.

Note that the impairment of the activity-dependent increase of

filopodia in neurotrypsin-deficient mice was restored by

administration of agrin-22.

(F and G) Filopodia densities on dendrites after application of

agrin-90 (F) and agrin-110 (G). Note that agrin-90 and agrin-

110 had little or no activity.

(H) Filopodia densities on dendrites in hippocampi from wild-

type mice after application of the four splice variants of

agrin-22 (z0, 8, 11, 19). Error bars indicate SEM; ***p < 0.001

by ANOVA with Tukey’s post hoc test. For representative

images of dendrites studied in (F–H), see Figure S10.

see also Figure 2A) might function as filopodial

inducers. To test this hypothesis, we produced

these fragments in HEK293T cells, purified them,

and added 50 nM of each to neurotrypsin-deficient

hippocampal slices (Figure 5). We found that

administration of agrin-22 (z0) with PFR induced

a significant increase of filopodia, reaching levels

observed in PFR-stimulated wild-type hippocampi

(0.182/mm; Figures 5A–5E). Almost the same effect

was found when agrin-22 was applied without PFR

(0.167/mm). These results identify agrin-22 as the

mediator of the filopodia-generating response

associated with LTP.

Agrin-90 was unable to rescue PFR-induced filo-

podia stimulation in neurotrypsin-deficient mice

when administered alone or in combination with

PFR (0.120/mm or 0.128/mm, respectively;

Figure 5F). We also tested agrin-110 that was

generated by partial proteolytic cleaveage at the

a cleavage site and comprised both agrin-90 and

agrin-22. Agrin-110 (y0z0) showed only a weak,

statistically insignificant rescue (0.136/mm; Figure 5G) even

though it contains the C-terminal part of agrin. Therefore, we

concluded that the C-terminal domain of agrin was only active

when isolated in the form of agrin-22, and thus that b cleavage

was important to exert a maximal filopodia-inducing effect.

The role of agrin splice variants at the z site has been well char-

acterized for NMJ formation and AChR clustering (Burgess et al.,

1999). Because agrin-22 contains the z site, we investigated the

effects of all splice variants (z0, z8, z11, z19) in wild-type mice

without chemical stimulation. Administration of all splice variants

of agrin-22 for 10 min induced a significant increase in the

number of filopodia (Figure 5H). This is in contrast to results

from the NMJ where the z0 isoform differed from the other iso-

forms.
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In summary, we have shown that the neurotrypsin-dependent

generation of agrin-22 is essential for LTP-dependent filopodia

induction and that the agrin-22-derived signals resulting in

NMJ development and those resulting in the generation of filopo-

dia from dendrites of CNS neurons are distinct.

DISCUSSION

The Neurotrypsin-Dependent 22 kDa Fragment of Agrin
Is Instrumental for the Promotion of Dendritic Filopodia
We found activity-dependent exocytosis of neurotrypsin from

presynaptic terminals and cleavage of its substrate agrin to be

crucial for the formation of dendritic filopodia in the context of

NMDA-R-dependent postsynaptic signaling. In neurotrypsin-

deficient mice, in which the cleavage of agrin was abolished,

no activity-dependent generation of dendritic filopodia was

found. However, filopodia formation was completely restored

by exogenous administration of agrin-22, the neurotrypsin-

dependent C-terminal 22 kDa fragment of agrin.

In light of its filopodia-inducing activity, agrin-22 can be

considered as one of a growing number of cell function-regu-

lating factors generated by proteolytic cleavage of extracellular

matrix or non-matrix proteins. Most prominent among these

are several endogenous inhibitors of angiogenesis, such as

endostatin, derived from collagen XVIII, arresten, derived from

collagen IV, and endorepellin, derived from the heparansulfate

proteoglycan perlecan (Nyberg et al., 2005). Unlike the cell-

derived cytokines, these factors are produced by extracellular

proteolysis. They have little or no activity as long as they are

part of the parent protein. Likewise, separation of agrin-22

from agrin by extracellular proteolysis was necessary for full

expression of its filopodia-inducing activity.

The dendritic receptor mediating the filopodia-inducing func-

tion of agrin-22 is currently unknown. Based on recent investiga-

tions, the molecular mechanisms of agrin function at the NMJ

and in the CNS are fundamentally distinct. The agrin signal at

the NMJ is mediated via the receptor tyrosine kinase MuSK

(Glass et al., 1996), and it promotes the formation, maturation,

and maintenance of the synaptic specialization by protecting it

from a synapse-dispersing activity (Kummer et al., 2006). In

contrast, the a3-subtype of the Na+/K+-ATPase was identified

as a neuronal agrin receptor in the CNS, and it was demon-

strated that its Na+/K+-pumping function was inhibited by agrin

binding, thus suggesting a depolarizing function of agrin on

CNS neurons (Hilgenberg et al., 2006). Other studies on agrin

function in the CNS indicate that clustering of agrin by antibodies

(Annies et al., 2006) and neuronal overexpression of agrin

(McCroskery et al., 2006) stimulate filopodia formation.

The Neurotrypsin-Agrin System May Serve
as a Coincidence Detector for Concomitant
Pre- and Postsynaptic Activation
Neurotrypsin exocytosis after presynaptic depolarization was

not sufficient for agrin cleavage, which depended on the

concomitant activation of the postsynaptic neuron. When LTP

was induced by PFR stimulation, and therefore was NMDA-R

dependent (Otmakhov et al., 2004), neurotrypsin-dependent

agrin cleavage was blocked by the selective NMDA-R antagonist
1168 Cell 136, 1161–1171, March 20, 2009 ª2009 Elsevier Inc.
MK-801. Activation of NMDA-Rs requires strong depolarization

of the postsynaptic membrane to remove the Mg2+ block (Mayer

et al., 1984). Thus, neurotrypsin activity induced by PFR required

presynaptic activity for neurotrypsin exocytosis and postsyn-

aptic depolarization resulting in NMDA-R signaling for its activa-

tion. Only then was agrin cleavage by neurotrypsin detected. In

contrast, if LTP was induced by TEA, which induces a combina-

tion of NMDA-R-dependent and L-type VDCC-dependent LTP

(Huang and Malenka, 1993; Hanse and Gustafsson, 1994; Huber

et al., 1995), neurotrypsin-dependent agrin cleavage was

blocked by both MK-801 and nifedipine. As with the activation

of NMDA-Rs, activation of L-type VDCCs is linked to action

potential firing in the postsynaptic cell. Therefore, these results

suggest that neurotrypsin-dependent agrin cleavage may serve

as a coincidence detector for correlated activity of the pre- and

postsynaptic neuron. Correlated activity is widely considered as

an essential requirement for activity- or experience-dependent

modification of activated synapses. According to Hebb’s postu-

late, connections with correlated activity will be strengthened,

whereas those with uncorrelated activity are weakend and even-

tually disassembled (Hebb, 1949). Based on its activation mech-

anism, the NMDA-R serves as a molecular detector for the coin-

cidence of presynaptic activation (glutamate release) and

postsynaptic depolarization (Bourne and Nicoll, 1993) and is

therefore thought to be the molecular master-switch that initiates

Hebbian learning (Tsien, 2000). Neurotrypsin-dependent agrin

cleavage shares its induction mechanism with LTP by its crucial

dependence on both activity-controlled presynaptic exocytosis

and the concomitant activation of the postsynaptic cell.

The mechanism underlying NMDA-R-dependent activation of

neurotrypsin is currently not clear. The most straightforward

models suggest that neurotrypsin is released in an inactive form

that requires NMDA-R activity for its activation or, alternatively,

that the susceptibility of agrin for proteolytic cleavage by neuro-

trypsin is regulated by mechanisms requiring NMDA-R activity.

The Neurotrypsin-Agrin System as a Potential Mediator
of LTP-Associated Synapse Formation
It is widely accepted that dendritic filopodia serve as precursors

of new spines in the context of activity-dependent synaptogen-

esis (Jontes and Smith, 2000; Yuste and Bonhoeffer, 2004; Knott

and Holtmaat, 2008). Formation of filopodia is observed within

minutes of LTP-inducing stimulation (Engert and Bonhoeffer,

1999; Maletic-Savatic et al., 1999; Jourdain et al., 2003; Nägerl

et al., 2004; Holtmaat et al., 2005, 2006). The transition of filopo-

dia to spines upon contact with a presynaptic bouton was

directly observed (Ziv and Smith, 1996) and inferred from the

observation of synapses on filopodia (Vaughn et al., 1974; Saito

et al., 1997; Fiala et al., 1998; Marrs et al., 2001). Time course

studies indicated that postsynaptic molecules, such as PSD-

95, appear at the filopodial tip already 2 hr after initial contact

with a bouton (Friedman et al., 2000; Okabe et al., 2001; Marrs

et al., 2001). In contrast, it takes between 15 and 19 hr until ultra-

structural indicators of postsynaptic specialization appear

(Nägerl et al., 2007). The time difference of >12 hr from the first

molecular signs of postsynaptic specialization to ultrastructural

synaptic features may reflect the timescale of synapse matura-

tion. These observations indicate that filopodia and resulting



synapses are not essential for the synaptic enhancement

recorded after LTP induction. Rather, dendritic filopodia may

be considered as an epiphenomenon of LTP and the resulting

synapse formation may represent a delayed effect that results

in long-term structural stabilization of the enhanced synaptic

function and/or the reorganization of the synaptic connectivity.

Consistent with this view, inactivation of neurotrypsin abrogated

filopodia formation but did not affect LTP.

EXPERIMENTAL PROCEDURES

Neurotrypsin-pHluorin-Expressing Mice

To generate a catalytically inactive reporter for neurotrypsin exocytosis, serine

711 of the catalytic triad of murine neurotrypsin was mutated to alanine by PCR

mutagenesis. The mutated neurotrypsin cDNA was attached to the supereclip-

tic variant of pHluorin (SpH, kindly provided by Dr. Miesenböck) via a -Ser-Gly-

Ser-Gly-Gly- linker. The fusion construct was inserted into the Thy1.2 vector

(Caroni, 1997). After microinjection of the construct into the pronucleus of

fertilized oocytes we obtained 15 transgenic lines. From these we selected

lines B6;D2-Tg(Thy1-Prss12/SpH) 962 and 1099 Zbz based on their strong

expression of neurotrypsin-pHluorin in hippocampal neurons, especially in

the subiculum-CA1 area (Figures S1A and S1B).

Chemical Stimulation

To prepare acute slices for chemical stimulation, the hippocampus, together

with the adjacent cerebral cortex, was rapidly dissected from whole brains

of 4- to 6-week-old mice then cut vertically to the long axis of the hippocampus

into 400 mm-thick slices using a McIllwain tissue chopper (Mickle Laboratory

Engineering Co). The slices were transferred into artificial cerebrospinal fluid

(ACSF) without calcium (120 mM NaCl, 3 mM KCl, 1.2 mM NaH2PO4, 23 mM

NaHCO3, 11 mM glucose, 2.4 mM MgCl2) oxygenated with 95% O2/5% CO2

and incubated for 1 hr at room temperature to provide sufficient time for the

brain tissue to recover from the dissection. Before stimulation, the slices

were incubated in ACSF with calcium (2.4 mM CaCl2) for 20 min. For chemical

stimulation, slices were incubated with either 30 mM KCl, 30 mM TEA, 1 mM

glutamate, or 100 mM bicuculline for 10 min or with 50 mM KCl for 40 s. Another

stimulation protocol (PFR stimulation) used a combination of 50 mM picrotoxin,

50 mM forskolin, and 0.1 mM rolipram in ACSF with high Ca2+ (4 mM CaCl2) and

without Mg2+ for 16 min. All inhibitors were added 20 min before stimulation.

The following concentrations were used: u-agatoxin IVA, 0.5 mM; u-conotoxin

GVIA, 1 mM; CNQX, 20 mM; MK-801, 20 mM; and nifedipine, 50 mM. The same

chemical stimulation protocols were also applied to whole hippocampi

dissected from P10 brains. After stimulation tissue was either immediately

frozen for western blotting or fixed by incubation in 4% paraformaldehyde,

4% sucrose in PBS, pH 7.4, overnight at 4�C for histological analyses.

Analysis of Neurotrypsin-pHluorin Secretion

Fixed acute slices were mounted on slides with Vectashield. The layer V region

of the entorhinal cortex was imaged with a 403 objective and fluorescence

optics. The images were changed to gray and binary-mode to count positive

puncta using Scion Image software. Puncta were defined as an area of

0.8–3 mm2 to exclude small extrasynaptic signals and large cell body signals.

Electrophysiological Methods

Parasagittal brain slices (350 mM thick) containing the hippocampus were

prepared according to procedures approved by the Department for Veterinary

Affairs of the Canton of Zurich, Switzerland. Briefly, mice were anesthetized

with halothane and decapitated. The heads were immediately immersed in

ice-cold artificial cerebrospinal fluid (ACSF) containing 125 mM NaCl,

1.25 mM NaH2PO4, 2.5 mM KCl, 1.0 mM MgCl2, 25 mM NaHCO3, 10 mM

glucose, 2 mM CaCl2, 1 mM MgCl2 (pH 7.4, 305 ± 5 mOsm, saturated with

95% O2/5% CO2). After cooling for about 1 min the brain was rapidly removed

from the skull and placed ventral side down on an ice-cold surface. The cere-

bellum was cut away and the hemispheres were separated along the midline.

The hemisphere was fixed with the cut side down on the stage of a vibratome
(VT1000S Leica, Nussloch, Germany) with cyanoacrylate glue. Sections con-

taining the hippocampus were kept submerged in ACSF at 34�C for 40 min

then stored at room temperature for 1–6 hr before use. Field recordings from

the CA1 region were made in submersion-type chambers at 27�C using

ACSF-filled pipettes to both stimulate and record the excitatory postsynaptic

potentials (fEPSPs) in the CA1 stratum radiatum. Axopatch 200B or Multiclamp

amplifiers (Molecular Devices, Palo Alto, CA, USA) were used to record the

fEPSPs, and data were stored and analyzed using the pClamp 9.0 software

package (Molecular Devices). The stimulation intensity was set to evoke

a fEPSP 40%–50% of the maximal amplitude without population spikes.

Stimuli were applied at 30 s intervals. After obtaining a stable baseline for

30 min, long-term potentiation was evoked with four 1 s trains of 100 Hz stimuli

delivered at the test intensity at 30 s intervals. The fEPSP amplitude was

measured from the baseline for each sweep. The baseline amplitude was

the average over a 10 min sampling period just prior to the high frequency stim-

ulation and the average fEPSP amplitude was calculated as the average of

a 10 min sampling period 3 hr after stimulation. Paired t tests using raw values

were used to determine whether there was significant potentiation within each

group and unpaired t tests on normalized values were used to compare the

amount of potentiation between groups.

Quantification of Filopodia

To visualize dendritic filopodia, we used the transgenic mouse line L15 over-

expressing membrane-targeted GFP in sparse CA1 neurons (De Paola et al.,

2003), or offspring of crosses between L15 and neurotrypsin-deficient mice.

Tissue slices were produced as detailed above. Serial images of secondary

apical dendrites of hippocampal CA1 pyramidal neurons expressing mGFP

were collected at z-steps of 0.12 mm using a 1003 objective (Leica SP1).

We only analyzed healthy-looking dendrites without swelling that could be

traced back to the cell body. We reconstructed 3D images from z stacks using

the Surpass Volume mode in the Imaris isoftware (Bitplane AG) and counted

the number of filopodia over a length of 30–40 mm along 27–40 independent

secondary apical dendrites (�1 mm in total length) from three independent

experiments by inspecting the 3D images from all directions. Dendritic filopo-

dia were identified according to the morphological criteria described by Grut-

zendler et al. (2002). Counting was done blind with respect to condition and

genotype on images that were coded before counting.

Preparation of Recombinant Agrin Fragments

The recombinant agrin fragments used in this study were cloned as secretory

proteins into the pEAK8 or pcDNA3.1 vector using standard recombinant DNA

procedures. The proteins were expressed in the eukaryotic cell line HEK293

EBNA. The secreted proteins were purified from the culture supernatants using

standard chromatographic procedures (for details see Supplemental Data).

SUPPLEMENTAL DATA

Supplemental Data include ten figures and Supplemental Experimental Proce-

dures and can be found with this article online at http://www.cell.com/

supplemental/S0092-8674(09)00248-7.
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