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Metabotropic glutamate receptors are classified into three

groups, primarily on the basis of sequence similarity and

whether they positively couple to the phospholipase C cascade

or negatively couple to adenylyl cyclases. The past decade of

research, drawing on sophisticated molecular approaches, has

revealed a multitude of additional intracellular components that

assemble as protein scaffolds around neuronal metabotropic

glutamate receptors, establishing functional links to

postsynaptic density structures, to membrane-bound enzymes

and ion channels, and to the nucleus. Characterization of these

novel transduction mechanisms is providing new insights into

the roles of metabotropic glutamate receptors in the regulation

and modulation of diverse functions in the nervous system.
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Introduction
The metabotropic glutamate receptors (mGluRs) were

discovered when it was observed that exposing neurons to

glutamate activated not only ionotropic receptors but also

stimulated phospholipase C (PLC) [1,2]. Soon thereafter,

a family of eight distinct mGluR subtypes was identified,

and the palette of associated intracellular signaling

mechanisms was greatly extended [3]. The mGluRs

are classified according to structural and functional cri-

teria into Group I (mGluR1 and mGluR5), Group II

(mGluR2 and mGluR3), and Group III (mGluR4,

mGluR6, mGluR7, and mGluR8) [4]. Here, we provide

a brief update of new developments that expand and

clarify our understanding of the transduction mechanisms

mediating responses initiated by mGluRs. A major

advance in this field, the retrograde signaling by endo-

cannabinoids following the activation of postsynaptic
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mGluRs, will not be discussed explicitly here as this

topic is the subject of several comprehensive recent

reviews (e.g. see [5]).

Transduction within the mGluR
Upon binding of glutamate, a conformational change in

homodimeric mGluRs promotes the coupling of G pro-

teins to specific intracellular domains. Structural studies,

beginning with the crystallization and characterization of

the agonist-bound and ‘unliganded’ forms of the gluta-

mate binding site of mGluR1, provided initial insights

into the underlying process [6]. Agonist binding stabilizes

the closed conformation of the extracellular domain and

results in G protein activation that is dependent upon a

disulfide bridge between conserved cysteine residues in

the extracellular agonist binding loop and the third trans-

membrane domain [6,7]. This disulfide bridge mediates

intrareceptor signaling by inducing an allosteric interac-

tion between the glutamate binding domain and the

heptahelical domain [7]. Thus, agonist binding changes

the relative positions of the helical domains of these

dimeric receptors to permit G protein activation.

A peculiar property reported for several metabotropic

responses, including those mediated by mGluRs [8], is

their voltage sensitivity. It has now been shown that this

voltage dependence resides within the receptor itself. It

appears that depolarization modifies the conformation of

the second and third intracellular loops, thus affecting the

association with G proteins [9]. These depolarization-

dependent changes in G protein binding, in turn, alter

the proportion of receptors in the high-affinity state for

agonist [10].

G-protein-independent signaling
The canonical cascade coupling metabotropic receptors

with their intracellular effectors begins with the activa-

tion of G proteins, hence the name G-protein-coupled

receptors. Over the past decade, however, several studies

have reported metabotropic responses that do not involve

G proteins [11]. Evidence that mGluRs can also function

in this manner came from experiments showing that

activation of mGluR1 in hippocampal neurons simulta-

neously triggers both G-protein-dependent and

-independent signaling to induce distinct currents

[12,13]. The same conclusion was reached in a study

using hippocampal pyramidal neurons from transgenic

mice lacking the G proteins associated with postsynaptic

mGluRs, in which inward currents mediated by mGluRs

nevertheless persisted [14]. It is interesting that, for

certain neuronal responses, specific mGluRs appear to
www.sciencedirect.com
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preferentially utilize G-protein-dependent pathways

whereas, for other responses, the G-protein-independent

mechanism predominates. For example, activation of

mGluRs can lead to potentiation of responses mediated

by N-methyl-D-aspartate (NMDA)-type glutamate recep-

tors, which are critical for the induction of many forms of

synaptic plasticity. In CA3 pyramidal neurons, which

express both mGluR1 and mGluR5, NMDA receptor

potentiation by mGluR5 was found to be G-protein-

dependent, whereas potentiation by mGluR1 could pro-

ceed independently of G protein activation [15]. In the

same cells, a mGluR1- and mGluR5-induced cationic

current necessitates the cooperative activation of both

G-protein-independent and G-protein-dependent path-

ways, with the former targeting calcium-sensitive cationic

channels that conduct the current and the latter eliciting

the release of the requisite calcium from intracellular stores

(Figure 1) [16].

b-arrestins and mGluR signaling
Following their activation, metabotropic receptors

undergo rapid desensitization through a process involving

phosphorylation by G-protein-coupled receptor kinases,
Figure 1

Diagram illustrating the mechanisms proposed to underlie the

modulation of NMDA responses by Group I mGluRs. The G-protein-

dependent activation of PLCb triggers divergent signaling cascades

leading both to potentiation of NMDA responses (centre of scheme) and

to calcium-dependent activation of tyrosine phosphatases that depress

NMDA responses. When G proteins are experimentally blocked, a

parallel pathway utilized by mGluR1 is revealed (left-hand side of

scheme) that activates Src, probably via the adaptor protein b-arrestin,

leading to potentiation of NMDA responses. CAKb/Pyk2, cell adhesion

kinase b/proline-rich tyrosine kinase; DAG, diacylglycerol; PKC, protein

kinase C; PTP, protein tyrosine phosphatase. Note that, for simplicity,

mGluRs which function as dimers are depicted as monomers.
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which then allows the binding of the adaptor proteins

b-arrestin 1 and b-arrestin 2 that direct receptor endocy-

tosis through targeting to clathrin-coated pits [17]. This

mechanism also holds for the mGluRs, although a phos-

phorylation-independent form of desensitization mediated

by G-protein-coupled receptor kinase-2 has been

observed, as recently reviewed [18]. In addition to their

role in receptor desensitization, b-arrestins act as scaffold-

ing elements for the recruitment of signaling proteins that

regulate diverse cellular functions [11,17,18]. A variety

of direct and indirect evidence indicates that mGluRs

associate with b-arrestins in the initiation of intracellular

cascades effecting neuronal responses. Both the G-protein-

independent actions of mGluR1 that lead to the induction

of cationic current [12] and the potentiation of NMDA

currents [15] in the hippocampus were shown to require

activation of the non-receptor tyrosine kinase Src. In this

case, it is likely that b-arrestin is acting as the adaptor to

couple a Src-family kinase to the activated mGluR, as has

been shown for Src activation by numerous other metabo-

tropic receptors [11,17]. A more recent study has identified

a role for b-arrestin 2 in the recruitment of Src to Group III

mGluRs, leading to the activation of mitogen-activated

protein kinase (MAPK) pathways [19].

Ubiquitous actions of calcium
Almost every step in the signaling pathways associated

with mGluRs requires, or is modulated by, calcium.

Beginning with the receptors themselves, both the

potency and efficacy of glutamate action at Group I

mGluRs is enhanced with increasing concentrations of

extracellular calcium [20]. Importantly, the efficacy of

mGluR signaling is modulated by physiologically relevant

changes in extracellular calcium, such that calcium deple-

tion in the synaptic cleft, as occurs during burst firing,

causes significant inhibition of postsynaptic mGluR func-

tion [21�]. Intracellularly, significant release of calcium is

observed after synaptic activation of dendritic mGluRs,

which can propagate as waves and even reach the cell

nucleus under appropriate conditions [22].

Recent studies have shed light on the modulation by

calcium of the transduction pathway between mGluRs

and NMDA receptors. Work performed by John

MacDonald and colleagues has delineated a transduction

pathway that potentiates NMDA receptor currents

through the sequential activation of metabotropic recep-

tors, PLCb, protein kinase C, CAKb/Pyk2 (cell adhesion

kinase b/proline-rich tyrosine kinase) and Src [23,24].

Interestingly, when initiated by mGluRs, this pathway

requires inositol-1,4,5-trisphosphate (IP3) receptor-

dependent intracellular calcium release; calcium influx

through NMDA receptors or voltage-dependent calcium

channels does not lead to potentiation of NMDA

responses [25]. However, if intracellular calcium rises

excessively, an antagonistic G-protein-dependent path-

way prevails that reduces NMDA responses [15,26].
Current Opinion in Pharmacology 2007, 7:56–61
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Figure 2

Activation of mGluRs can modulate both local postsynaptic translation

of mRNA and nuclear transcription. The underlying signaling pathways

typically target MAPKs, either originating at mGluRs via Homer or G

protein activation, or following transactivation of the epidermal growth

factor receptor (EGFR), thus inducing protein tyrosine kinase (PTK)

activity of the intracellular domain and leading to Src activation. The

fragile X mental retardation protein (FMRP) modulates mGluR signaling

by virtue of its inhibitory effects on translation. The PI3K–Akt–mTor

pathway represents a further signaling cascade that regulates translation

in parallel to the MAPK pathways.
Thus, neurons that express NMDA receptors contain

both mGluR-dependent facilitatory and depressing path-

ways to ensure the precise regulation of this physiologi-

cally crucial receptor. Furthermore, either the facilitating

or the depressing pathway can dominate depending upon

the cell type [26], and is likely to be regulated by factors

such as differences in calcium signaling pathways or in

intrinsic calcium buffering capacity. Such bidirectional

modulation under the control of intracellular calcium

concentration was also found to determine whether

mGluR5-dependent plasticity of NMDA responses

results in long-term potentiation (LTP) or long-term

depression (LTD) at the perforant path–granule cell

synapse [27]. These findings provide an explanation for

the discrepancies in the literature concerning facilitatory

versus depressing NMDA receptor modulation by

mGluRs, and highlight the significance of differences

in preparations and experimental conditions that could

influence ambient intracellular calcium concentrations.

Differences in NMDA receptor modulation could also

contribute to the distinct susceptibilities of various neu-

ronal cell types to ischemic cell death. Indeed, in hippo-

campal CA1 pyramidal neurons, transient energy

deprivation results in Src-dependent upregulation of

NMDA receptor function associated with delayed neu-

ronal death whereas, in neighboring CA3 pyramidal neu-

rons, which are known to be more resistant to ischemia,

the same protocol activates tyrosine phosphatases and

does not lead to either NMDA receptor potentiation or

cell death [28]. The calcium-sensitive equilibrium

between tyrosine kinases and phosphatases might also

be important in determining the phosphorylation state of

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) receptors, which in turn will determine whether

synapses are in a potentiated [29] or depressed state [30].

Modulation of transcription and translation
by mGluRs
The consolidation of synaptic plasticity is dependent upon

protein synthesis. The ability of mGluRs to initiate this

process was shown by studies demonstrating a role for

mGluR-dependent protein synthesis in the maintenance

of epileptiform discharge [31] and in hippocampal synaptic

plasticity [32,33]. Interestingly, the protein synthesis

necessary for mGluR-dependent hippocampal LTD

depends upon local translation of mRNA near the synapse,

and not upon transcription [32]. Concurrently, it was

reported that mGluR-dependent LTP was reduced after

blockade of extracellular signal-regulated kinase (ERK)1/

2–MAPK signaling [34]. More recent studies have refined

our understanding of the signaling mechanisms linking

Group I mGluRs to MAPK activation and the role that

these pathways play in protein synthesis-dependent neu-

ronal plasticity. MAPK cascades are triggered by stimuli

at the extracellular membrane and culminate in the phos-

phorylation and activation of MAPKs comprising ERKs,

c-Jun N-terminal kinases (JNKs) and p38s, which promote
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translation and activate transcription factors to increase

protein synthesis. Stimulation of mGluR5 leads to weak

activation of ERK1/2 through the PLCb/IP3/Ca2+ pathway

and much stronger activation via the scaffolding protein

Homer 1b/c [35]. Conversely, Homer 1a inhibits mGluR-

dependent activation of MAPK, a mechanism important in

downregulating chronic pain signaling [36�]. Robust

activation of ERK and JNK MAPKs is also achieved by

mGluR5-dependent transactivation of the epidermal

growth factor receptor [37,38].

The mGluR-dependent synaptic plasticity associated

with persistent epileptiform discharge [39], hippocampal

LTD [40] and hippocampal LTP in oriens/alveus inter-

neurons [29] has been shown to depend both upon ERK

activation and upon a transduction pathway that employs

a tyrosine kinase, rather than PKC, to phosphorylate and

activate ERK1/2. In addition, Group I mGluRs activate

a transduction pathway involving phosphoinositide

3-kinase (PI3K), Akt and mammalian target of rapamycin

(mTor), which modulates mRNA translation in parallel

with the ERK pathway to induce LTD [41]. Several

studies have also shown the involvement of p38 MAPKs

in mGluR-dependent LTD (Figure 2) [42–44,45��].

Translation and transcription factors targeted by MAPK

cascades following mGluR activation have recently been
www.sciencedirect.com
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characterized. Activity of the cap-dependent translation

protein eIF4E was shown to be under the control of both

the ERK pathway [32,46�] and the PI3K–Akt–mTor

pathway [46�], a finding which clarifies the mechanism

underlying mGluR-dependent LTD. The mGluR-

dependent phosphorylation of JNK increases transcrip-

tion mediated by activator protein-1 [38], and activation

of p38 regulates nuclear factor-kB (NF-kB) [45��]. In

knockout mice lacking the NF-kB member c-Rel, late-

phase LTD, as well as performance in a passive avoidance

task, was diminished [45��]. An additional factor modu-

lating mGluR-dependent protein synthesis is a negative

regulator of translation called fragile X mental retardation

protein (FMRP), the levels of which rise in dendrites

following activation of group I mGluRs. Thus, in mice

lacking FMRP, mGluR-dependent LTD is enhanced

[47], as is the propensity for epileptiform activity owing

to over-activation of protein translation [48�]. These

findings suggest that antagonists of either Group I

mGluRs or the downstream elements of the ERK signal-

ing pathway may be useful in the treatment of fragile X

syndrome [49].

mGluRs can also target transcription factors independent

of MAPK or PI3K activation. Enhanced activation of

mGluR4 in developing cerebellar granule cell cultures

reduces Gli-1, a transcription factor in the Sonic Hedge

Hog pathway [50]. This mGluR4-dependent effect was

associated with reduced proliferation of cerebellar neural

precursor cells and an increase in their differentiation into

mature granule cells [50].

Conclusions and outlook
mGluRs play key roles in the modulation of diverse

cellular responses. Recent structural advances have pro-

vided new insights into how changes in receptor confor-

mation can initiate response transduction. In addition,

molecular analysis is providing rich detail into the sur-

prisingly divergent signaling pathways employed by

these receptors, which modulate targets not only in the

membrane but also in the cytoplasm and nucleus.

Although metabotropic receptors and the responses they

mediate are becoming well characterized, the conditions

under which mGluRs are synaptically activated remain to

be established. Postsynaptic mGluRs are located at peri-

synaptic or extrasynaptic sites and, as such, will sense

relatively low concentrations of glutamate diffusing out of

the synaptic cleft. Yet, in most studies, high concentra-

tions of agonist are applied to preparations that often

exceed the EC50 values for mGluRs by one to two orders

of magnitude [4]. A challenge for future studies will be to

design experiments that mimic mGluR activation levels

occurring during physiological network activity.

An important focus of current research is the linking

of molecular data on mGluRs with specific sensory
www.sciencedirect.com
and behavioral functions. Apart from enhancing our

understanding of diverse neuronal mechanisms, this

approach is generating leads that promise new therapies

for the treatment of a wide spectrum of psychiatric and

neurological disorders [51].
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